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Abstract— Exact solutions are presented for the free vibration behavior of piezoelectric laminates
in cylindrical bending. The laminates can be composed of an arbitrary number of elastic and
piezoelectric layers. The natural frequencies and through-thickness modal distributions are com-
puted for the case where the upper and lower surfaces of the laminate are traction free. The
electrostatic potential or the normal electric displacement is specified to be zero at these surfaces.
All appropriate interface conditions are also satisfied. The resulting determinant equation is iter-
atively solved for the resonant frequencies, with the mode distributions of the elastic and electric
field variables also computed. Representative examples are studied for thick and thin laminate
geometries.

1. INTRODUCTION

The free vibration of elastic laminates has been studied in detail by Jones (1969, 1971) for
the case of cylindrical bending and by Srinivas et al. (1970) and Srinivas and Rao (1970)
for finite rectangular plates. Studies of the exact vibration behavior of laminates containing
piezoclectric layers have seen limited investigation. The work of Tiersten (1969) provided
the theoretical foundations and numerous examples of the dynamic behavior of piezoelectric
plates, but most of the geometries studied therein were composed of single layers.

In this study, the coupled dynamic equations of linear piezoelectricity are solved for
laminates composed in whole or in part by piezoelectric layers under the conditions of
cylindrical bending and periodic motion. No kinematic assumptions are used to describe
the behavior of the electric and elastic field variables. The equations of motion, the charge
equation, and the boundary and interface conditions are satisfied exactly. The methodology
and results presented here are expected to provide the necessary means with which to
compare more versatile and efficient approximate techniques for the analysis of finite
piezoelectric laminates under more general conditions.

2. METHODOLOGY

Geometry and governing equations

A laminate composed either completely or in part of piezoelectric layers is shown in
Fig. 1. The x axis is out-of-plane, with the 1 and z axes corresponding to the respective
axial and transverse coordinates of the laminate. The laminate is assumed to be infinitely
long in the x-direction, with perfect bonding between layers. A bond-line may be simulated
using a layer of small thickness. The laminate is of length L, the total thickness is /4, and
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Fig. I. Geometry of the laminate in cylindrical bending.
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the i-th layer has thickness 4. Layer 1 is the top layer of the laminate and layer » is the
bottom layer. In the ensuing discussion, the use of a local thickness coordinate is used for
each layer. This originates at the left end of the horizontal centerline of each layer.

Each of the n layers has the constitutive relations

o, = CyS,—enEy
Dk = ()k,'S/‘+£kmEnlw (1)

where i, j=1,2,...,6 and k, m = 1,2, 3. Here ¢, are the components of the stress tensor,
C; are the elastic stiffness components, S, are the components of infinitesimal strain, e,; are
the piezoelectric coefficients, E, are the components of the electric field, D, are the com-
ponents of the electric displacement, and ¢,,, are the dielectric constants. The poling direction
for the piezoelectric laminate is coincident with the x; or z axis.

The displacement components u; are related to the strain components through the
relations

1/0u; CJu;
S, == ! 1. 2
Y2 <8,\’. + ﬁx,«) @

/

Here the conventional notation for the strain indices has been used to be consistent with
eqn (1),i.e. 8§, = S|, 25,; = S,, etc., and x; = x, x, = y and x; = z. Under the conditions
of cylindrical bending, the displacement field takes the form u, = u =0, u, = v(y,z) and
uy = w(y, z), and the electrostatic potential has the form ¢ = ¢(y, z). Hence all variables
are independent of the x coordinate, and terms containing a gradient in the x-direction
vanish. The electric field components can be related to the electrostatic potential ¢ using
the relation

_9%

E, = .
! ox;

€)

As implied above, this yields £, = 0.

The materials used in this study are assumed orthotropic, and have their principal
material directions coincident with the x or y coordinate directions. The non-zero elastic
stiffnesses used here are C,,, C,3, C5;, and C4,. The independent piezoelectric coefficients
are e;,, €33, and e,,4, and the dielectric constants are &,, and ;5.

The equations of motion for each of the layers are given by

oo, N ot. &%
dy 8z P or?
ot,. Jdo. O*w
” =p—- C))
oy oz a1

Here p denotes material density for a given layer and ¢ is time.
Finally, the charge equation of electrostatics is given as

oD .
) )
oy oz

Substituting eqns (1)—(3) into eqns (4) and (5) gives the governing equations of the problem
in terms of the displacement components » and w and the electrostatic potential ¢ as
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Each of these equations must be satisfied for the material properties of a specific layer.
In addition to these equations, the boundary conditions on the upper surface of layer 1 and
the bottom surface of layer n must be specified. For the study of free vibration, these two
surfaces are assumed to be traction free, which can be stated as

o. <1 ’—’5) - ©)
. (y,-— ”5) o (10)
t_\:<y, hzl> =0 1y

T, <y,— %) = 0. (12)

Here it is assumed that the spatial dependence of each field quantity is written in terms of
the axial variable y and the local thickness variable. Rather than index the latter variable,
it is denoted simply as z with the understanding that it refers to an individual layer
coordinate and not that of the total laminate.

In addition to the mechanical boundary conditions, the electric surface conditions
must be satisfied. This is accomplished in this study by specifying either homogeneous
electrostatic potential or normal electric displacement. The homogeneous potential rep-
resents a grounded surface electrode, while a zero normal electric displacement is indicative
of a charge-free surface. The conditions on the electric field variables are denoted as

h h ) h, h\
(15( , 2)— 0or D_.(y,?> = 0, and either ¢<'}’—E> =0 or D_.(),— 2) = 0.

Exact solution
In cylindrical bending, the laminate is simply supported and the vertical edges are
assumed to be grounded. These conditions are expressed as

6.(0,2) =0,(L,2) =0 (13)
w(0,z) =w(L,z) =0 (14)
$0,2) = ¢(L,2) = 0. (15)

At each interface between layers, continuity conditions of displacement, traction,
potential, and normal electric displacement must be enforced. As with the solution of
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Pagano (1969, 1970), an indexing scheme is used to express the conditions for the /-th layer as

_h I,
0<17> — gt (; 12*‘) (16)

—h, h;

. =f’\§l<}’,7+') (17
_h h.

/ : :m'(},, 71;]) (18)

(20)

¥, /"'2* ! ) (19)

h;
_ i+ 1 , it
= D! <}, > ) (2D

Here i represents the layer number and #, is the thickness of the i-th layer. At each interface
of a laminate with » plies, there are four conditions related to the elastic variables and two
conditions related to the electric variables for a total of 6(n— 1) conditions. At the top and
bottom surfaces, there are two elastic boundary conditions and one electric condition for
a total of six conditions. Enforcing all conditions leads to 6n equations relating the variables
within all layers of the laminate.

The conditions in eqns (13)—(15) are satisfied identically using solutions of the form

(v, w, ) = (V(z) cospy, W(z)sinpy, p(z) sin pv)
= (Ucos py, Wsinpy, é sin py) exp(sz) exp(jw?). (22)

IS

Here the ” symbol denotes a constant, = is the local thickness coordinate of the lamina, s
is an unknown quantity, j =/ — 1, and w is the natural frequency of vibration. Substitution
of these expressions into the equilibrium and charge equations results in the system of
equations

Cuas™ — Corp’ +por’ Ps(Cri+Cyy) psless+e24) 7( V 01

—ps(Cys+Ca3) Cyys7 ‘C44!’2 + po? elzszweuﬁz Wi=:0 (23)

—ps(ers+es2) 1387 —esyp’ £22p7 — 8335 ¢ 0

Setting the determinant of this matrix to zero for a non-trivial solution yields the charac-
teristic equation

—As*+Bs* +Cs*+D =0, (24)
where the constants 4, B, C, and D are given as
A= CCiies+Cyueis (25)

B =(C1,C1361: —2C, 005033 —=2C1564565; ~C§38;; —2C53C 4833 ~2C 4035037+ Cpy Ci385,

+(’§4C13 + Cry€33 +2e3,0€24C;5 +€§2C33)P2 +(—pCiie33 — Cyypts; —pe%;)wz (26)
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C=(—C22C04833 — CouCa3820 + 2055031055 — 2055053024+ (‘gﬂ":z
+2C53Ca482 — €3:Cas +2Ca363,)p" + (Crapeys + Caapéss

420611024+ pCr3822+ €304 Cogpar +20502,p +e3p)0° p° —piw'ess (27)
D =(Cy3C44827+ C2283)p" +(— Caspins —e3,p — Cyypery)’ pt +p wteynp’. (28)

The sixth-order characteristic equation (24) can be expressed as the third-order equation
g +dg+f=0. (29)

The nature of the subsequent solution for each layer of the laminate depends on the roots
g. There can be three real and distinct roots, three real roots, at least two of which are
equal, and the case where there is one real root and two conjugate complex roots. The case
of repeated roots was not found for any of the materials considered in this study. Only the
remaining two cases are considered.

Case 1 : real roots for g
Given three real roots for g, the roots of the original sixth-order equation can be
determined by considering

B

34 (30)

}::_f:g{-

This will lead to six roots for m, which are either real or imaginary depending on the sign
of y. Following the nomenclature of Pagano (1969), the solution for the displacement and
electrostatic potential components can be written in either case as

V(z) = Z Vi) W)= Z LW() @) = Z RW (2). (31)

i=1
where
V= FC2)+G,.S5,(2)
W,=G,C(2)+a,F,S,(2). (32)

Here F; and G, are constants, j = 1,2, 3, and the functions C and S and the parameter m
are defined as

C, =cosh(m,z) S{z)=sinh(my:) 2,=1 (7>0) (33)
C,=cos(m,z) Si{z)=sin(m;z) 2,=—-1 (y<0) (34)
B 12

The values for the coefficients in eqn (31) are given by

pm; Rl 2 ~ 2 2
L= T/ [om; ey —p e (Cas + Coa) +(anjess —eap7) (€24 +€12)] (36)

/
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R = P}”/

J

[(1,’",2(’33 —€24P2)(C44 +Cy3) +(Cuap’ —Pw2 —oc_,-m‘,;Cu)(eM +es)] (37

J, = (9‘,’7’1/2333 _Pzﬁzz)(a,m,'? Ciy +I)CU2 _172 Cy4) —f—m‘?ei; “2(1_/"”,2'[72@33924 +€%4P4- (38)

Using the constitutive relations in eqn (1) allows the components of stress and electric
displacement to be given by

3
o, =sinpy Y (—pCy+am,L,Ca+amRe)V(2) (39)
i=1
3
T, = COSpy Z (Caam;+CugpL;+erpRYW,(2) (40)
i=1
3
D, =cospy Y (mj+pL,—epR)W ,(2) (41)
=1
3
D. = sinpy Z (—pess+eszoumL—ey30,m,R)Vi(2). 42)

=1

Here the expression for the normal stresses implies o), 6, and o, are equal to 0, 0, and o,
respectively.

If the layer is not piezoelectric, the equations above no longer hold because the electric
and elastic fields uncouple. With the exception of the inertial term influence, the elastic
fields are identical in nature to those determined by Pagano (1969). They are shown here
in a different form. The roots m,—m, corresponding to the elastic solution are those of the
characteristic equation

C44C33m4 +(2C3C —CCan + C%_’.)szz +GCs, (:'44174 +P2w4 =0 (43)

and the roots corresponding to the electrostatic solution are given by

= +p |2 (44)
€33

The displacement components and electrostatic potential are given by

V(z) = cospy i A;exp(m;z) 45)
j=1

W(z) = sinpy i Ao, exp(m;z) (46)

¢(z) = sinpy 2 Bexp(n;z). 47)

i=1
Here 4, and B, are constants, the values for m, are now the roots of eqn (43), and

P’”,‘(CM +Cs3)
(C”m:‘ —Cup’ +PCU2)

(48)

i
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The components of stress and electric displacement are given by

4
o, =sinpy Y (Caam,—Cyp)A, exp(m,z) (49)
j=1
4
T,.=cospy Y (m,+pa)A;exp(m,:z (50)
=1
D, = —eyppcospy 2 B exp(n;z) 51
=1
D. = —¢y;sinpy Z Bnexp(n;z). (52)

j=1

Case 2: complex roots for g

For some material and geometry combinations, there will be one real root for g and
two roots that are complex conjugate. The case of real roots for g has been discussed in the
previous section, and the focus here is on the remaining two roots. When 7y in eqn (30} is
complex, the two complex conjugate roots of g can be used to express the final four roots
of mas +(a+ib), wherei = \/ —1 and a and b are positive constants. The general solution
for V in this case can be expressed as

V(Z) — kl e(u+ih): +k2 e(u—ih):+k3 e(—a+|h): +k4 e(—uﬂh):, (53)
where k,—k, are complex constants. This can be expressed in terms of real functions as
V(z) = e“(¢, coshz+c¢, sinhz)+e “(cy cos bz + ¢, sin bz), 54)

where ¢,~¢, are now real constants. Using eqn (23), the corresponding solution for W can
be written as

W(z) = e“{[I" (ac, +bc)+Q, (ac, —be,)] cos bz
+[I(acs —bey)—Q, (ac, +bes))sinbz} +e [T (be, —acy ) + Q) (acs +bey)] cos bz
+ [T (—ac, —be;)+Q(bey —acy)] sinbz}. (55)

Here the parameters I'; and Q, are defined to be

LGt EE

ro=se (56)
L &+

Q== 57)
i

where &, = Z(pF)). &, = F (pF)), & = R(pF,), ¢, = F (pF,), with the functions F, and F,
given by

Fi = [e3:(a° =5 + 2iab) — £,,p°)(Cag + Ca3) + [e33(a@° — b +2iab) — er4p*1(erq +e32)
(58)
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Fy =(€3: 4+ Cia63) (@ —b?)? —4a? b + diab(a® — b*)] + p*(a® — b* + 2iab)

ot <_ Cizar+ ﬂﬂwzﬁzs — Cy4833 —23335’24>+P4(C44322 +9§4) —szgzzpz- (59)
p?

If the parameters 8, and f3; are introduced such that
ﬁ] =ar]—bQ| ﬁz =br1+aQ|, (60)
then the solution for W can be cast in the final form

W(z) = e“[(c\ Bi +c2Br)cosbz+(—c, 2+, By) sinbz]
+e " “[(—c3f +cafy)cosbz+(—c;f,—cafy)sinbz].  (61)

Using similar steps, the final solution for ¢ can be written as

¢(2) = e“[(c) Br+c2B4) cOsbz+(— ¢ fa + 2 f83) sin bz]
+e “[(—cyfitcafls)cosbz+(—cifla—cyfs)sinbz],  (62)

where in this case
B =al;—bQ, P, =0bl,+aQ,. (63)

Here the parameters I'; and Q, are defined to be

rzzﬂ1€j+’7§54 (64)
&+ &

Q, =’Iz‘fa_’7|54 (65)
&+E

where n, = #(pF;) and 5, = F (pF;), with

Fy = [es;(@® — b +2iab) —e,4p°)(Cas + C13)
+[—Cs3(@° —b* +2iab) + Coup® — po’](ezs +€32).  (66)

The components for stress and electric displacement can be computed using the constitutive
relations in eqn (1). These are lengthy but straightforward to construct and are not listed
here.

The solutions given in this section correspond only to the complex conjugate roots.
There will be an additional contribution to the solution through the appearance of the real
root for g. These must be combined to form the complete solution for the layer.

Solution for the laminate

Solutions for the displacement components v and w, the electrostatic potential ¢, the
three non-zero stress components o, 6., and 1,_, and the two non-zero electric displacement
components D, and D. are expressed in terms of six unknown constants for each of the n
layers. This yields 6r total unknowns for the complete laminate. These constants are
evaluated by enforcing the boundary and interface continuity conditions at the upper and
lower surface of each layer within the laminate. There are three boundary conditions at the
top of layer 1 and the bottom of layer n, with one from each of the pairs (v, 7,.), (w, ¢.), and
(¢, D.) for a total of six boundary conditions. At each interface the continuity conditions as
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expressed in eqns (16)—(21) are enforced, leading to 6(n-1) equations. Hence the total
number of equations and unknowns is 6x. This can be expressed in matrix form as

[41{0] =10 (67)

Here the vector {d} represents the unknown constants, with the entries in [4] representing
the values of their coefficients in the general solution.

For the free vibration problem, the coefficients 4,; are unknown since they are depen-
dent on the unknown natural frequency w. The additional constraint on this system to
determine w is the requirement for a non-trivial solution that det(4) = 0. To find the values
for the frequencies that enforce this condition, the frequency was stepped through a
sequence of small increments and the sign of the determinant computed. Evaluating this
parameter as a function of frequency yields regions near a zero determinant. After a
sufficient number of sign crossings have been identified. the values for w that yield a zero
determinant can be isolated and refined using bisection. The sign change was monitored by
computing the eigenvalues of [4] using the QR algorithm in extended precision.

3. NUMERICAL EXAMPLES

Four examples are considered in this section: a single piezoelectric layer, a two-ply
laminate of dissimilar piezoelectric materials, a symmetric three-ply hybrid laminate of
piezoelectric and elastic layers, and a three-layer cross-ply of orthotropic piezoelectric
material. All laminates are composed of materials termed A, B, C, and D. Materials A and
B simulate piezoceramics (Berlincourt et al., 1964), and possess transversely isotropic
material properties. Materials C and D are orthotropic, with D being piezoelectric (Tashiro
et al., 1981). The properties for each of these materials are given in Table 1. For simplicity,
the density of all four materials was set equal to 1.

The computational strategy and presentation of results is similar for each of the four
examples. Only the first axial mode [p = n/L in eqn (22)] is considered. For this mode,
there are an infinite number of thickness modes that are possible. The first ten of these are
documented here. For each laminate, two aspect (L//) ratios of 4 and 50 are studied to
represent a thick and thin plate. Also for each laminate. the top and bottom surfaces are
either grounded at zero potential or the electric displacement is specified to zero. These two
cases are termed closed and open conditions, respectively.

Results are given in terms of natural frequencies in radians per second. For the last
three examples, representative through-thickness distributions of the elastic and electric
field variables are also shown for the closed condition only. These have been normalized
by dividing through by the maximum value for each field variable. The scaling factors are

Table 1. Elastic, piezoelectric, and dielectric properties of materials

Property A B C D

¢ (GPay 81.3 136. 132.38 237.
Cs: 81.3 136. 10.756 232
Cis 64.5 116. 10.756 10.5
[ 0.329 0.204 0.24 0.154
C: 0.432 0.201 0.24 0.178
Cs, 0.432 0.201 0.49 0.177
Cyy 25.6 55.2 3.606 215
Css 25.6 55.2 5.6537 4.40
Che 30.6 56.5 5.6537 6.43

ey (C/m’) 12.72 12.29 0 —0.01
ey -5.20 - 5.35 0 —0.13
€31 —5.20 —5.35 0 —0.14
¢y 15.08 15.78 0 —0.28

Saxiby 1300 1700 3.0 11.98

iy e 1475 1730 35 12.3
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Table 2. Scale factors used in modal eigenfunction plots

Case r W ¢ a, 0. T, D.

[A/B]: 1.2273 3.44908 275318528 — — —
Lih=4

[A/B]: 0.79425 23.5538 12860534 — — —
Lih=50

[A/C/A]: 0.64500 299522 46113904 — — —
Lih=4

[A/C/A]: 0.47742  15.2998 2985087 — — —
Likh = 50

[D(90/0/90)]:  2.64563  22.24023 104116752 0.123416el5 0.36794e12 097833¢13  12.616
Lih=4

[D(90/0/90)] : 132676  43.3436 13970391  0.49517e13  0.23950¢9  0.59835¢l1  0.59587¢-2
Lih =50

shown for the three examples in Table 2, and should be multiplied by the corresponding
distributions in each figure to obtain the final (unscaled) eigenfunctions.

Single piezoelectric laver

A single layer of material A is considered first. The thickness of the plate is 0.01 m.
The resulting frequencies are shown in Table 3. These results indicate that the closed
conditions generate lower frequencies than do the open case values, and this effect on the
lower thickness modes is reduced as the plate becomes thin.

Two-layer laminate

A two-ply laminate is constructed of dissimilar piezoelectric materials with the lami-
nation scheme [A/B]. Both layers are of equal thickness and the total thickness is 0.01 m.
The resulting frequencies are given in Table 4.

Table 3. Frequencies /100 for single layer of material A

Lih=4 Lih=50
Mode Closed Open Closed Open

1 52580.67 53046.76 373.6468 373.6770
2 234514.7 254503.6 18970.19 20614.86
3 560241.7 642210.4 503061.9 585842.0
4 969921.1 972665.4 1004822 1004959

5 1154042 1224774 1083123 1155798

6 1513042 1545515 1507996 1540083

7 2016798 2021621 2010659 2010691

8 2319013 2321388 2310478 2310496

9 2522449 2545884 2513332 2532907
10 3017998 3019775 3015942 3015954

Table 4. Frequencies w/100 for two-layer [A/B] laminate
L//l =4 L//I‘l = 50
Mode Closed Open Closed Open

1 56492.87 57056.04 398.0712 399.5398
2 2725723 275664.7 22037.71 22199.65
3 642549.6 717847.4 578761.6 656277.1
4 1078116 1129993 1119205 1209600

5 1302643 1371236 1230936 1231074

6 1765606 1773905 1758431 1766933

7 2383141 2414676 2377974 2419966

8 2426698 2457413 2416459 2435533

9 2992976 3023384 2984263 3012504
10 3556566 3562834 3573218 3577041
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The distributions of the two displacement components v and w are shown in Fig. 2a,b,
with the corresponding through-thickness distribution of potential given in Fig. 2c. In this
and all other figures, the solid line corresponds to the case L/h = 4, with the dashed line
used for L/h = 50. The distribution for v is effectively a straight line for the thin plate, with
a slight kink appearing at the interface for the thick plate along with a slightly pronounced
non-linear behavior. The lower stiffness of the top plate is evident in both the relative
magnitudes of the displacement v and also for w. The thin plate yields a distribution of
transverse displacement that is nearly uniform, with a much larger difference for the thick
plate. There is little variation in the potential for the two cases, with the break in slope at
mid-plane appearing because of the change in material properties.

Hybrid elastic/piezoelectric laminate

Two layers of material A are bonded to the top and bottom of the non-piezoelectric
material C. The thickness of each A layer is 0.001 m with the total laminate thickness 0.01
m. The frequencies are given in Table 5. The through-thickness distributions for », w, and
¢ are shown in Fig. 3a—c. As expected, the behavior is symmetric about the mid-line for
this geometry, with the stronger variations in the displacements appearing for the thick
plate.

Three-layer cross-ply

A three-layer laminate is composed of material D with the orientation [90/0/90]. The
outer two plies are 0.001 m thick, with the inner single layer at 0.002 m. The frequencies
for this laminate are given in Table 6. The through-thickness distributions for v, ¢, g, 0.,
1,., and D. are shown in Fig. 4a—f. respectively. The plot for the transverse displacement w
is not shown because for both aspect ratios the distribution is essentially constant through
the thickness.

Table 5. Frequencies for three-layer [A/C/A] hybrid laminate

Lih=4 Lith= 50
Mode Closed Open Closed Open
1 4061328.8  4061731.4 39410.624 39410.667
2 27900191 27901969 2247302.1 2247317.1
3 36428990 36443066 23844186 23852156
4 37712838 37714304 37843597 37843597
) 55899720 55958795 48150971 48156904
6 74615082 74681734 73373346 73526447
7 80757823 80850840 76831789 76832551
8 102701050 102981673 99514068 99545214
9 118100120 118104818 117398034 117398080
10 129070007 129537579 126327777 126790968

Table 6. Frequencies for three-layer [D(90/0/90)] laminate

Lih=4 Lih =50
Mode Closed Open Closed Open
1 8566377 8567554 128750.6 128751.3
2 57005399 57009902 5665109 5666352
3 82327042 84435642 38771456 38776573
4 89589873 89590675 81551011 83188177
5 113129345 113140575 83497176 84122248
6 144984544 144984646 131859172 131860373
7 168046083 168199382 167795156 167796226
8 186632764 186634205 175962338 175962356
9 224987615 224990384 213529592 213530684
10 250544158 251255053 250927913 251638468
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Fig. 3. Through-thickness mode shapes for three-layer hybrid laminate. (a) Axial displacement v.

(b) Transverse displacement w. (c) Electrostatic potential ¢.
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4. CONCLUSIONS

The closed condition on the horizontal faces of the laminate consistently results in
lower natural frequencies regardless of aspect ratio or piezoelectric strength. This effect is
reduced as the aspect ratio of the plate is increased. For materials with smaller piezoelectric
coefficients, the influence of the electric boundary conditions is lessened.

The nature of the displacement and potential distributions through the thickness of
the laminate indicates that, for thick plates especially, simple plate theories may not
represent the true field behavior. The axial displacement and the electrostatic potential
distributions in particular are not represented well using a simple linear approximation.
This is true for the fundamental modes studied here and becomes even more evident for
the higher thickness modes. The development of piezoelectric plate theories may benefit
from assumed kinematic and potential behavior that represents at least the lower modes of
free vibration to a sufficient degree.
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